Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Di Qi,* Qing-Hua Zhu, Yong-Zhi He and Xiao-Liang Ren

Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China

Correspondence e-mail: qi_aidi@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
$w R$ factor $=0.115$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-\{2-[2-(4-Formyl-2-methoxyphenoxy)ethoxy]-ethoxy\}-3-methoxybenzaldehyde

The title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7}$, was prepared by reaction of 4-hydroxy-3-methoxybenzaldehyde and 1-chloro-2-(2-chloroethoxy)ethane. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding contributes to the stability of the structure in the solid state.

Received 30 August 2005 Accepted 17 October 2005 Online 22 October 2005

Comment

The synthesis of new and designed crystal structures continues to be an important area of research for chemists (Tynan et al., 2005; Parashar et al., 1988). One of the aims of crystal engineering is to establish control over the preparation of crystalline solid materials so that their architecture and properties are predictable. In order to investigate their crystal structures, which will provide useful information for their physical and chemical properties, in the present study we report the synthesis and molecular structure of the title compound, (I). It was synthesized by the reaction of 4-hydroxy-3-methoxybenzaldehyde with 1-chloro-2-(2-chloroethoxy)ethane.

The molecular structure of (I) is shown in Fig. 1. Some bond lengths and bond angles are listed in Table 1. Both vanillin groups are essentially planar, with an r.m.s. deviation of $0.0389 \AA$ for $\mathrm{C} 1-\mathrm{C} 7 / \mathrm{O} 1-\mathrm{O} 3$ and $0.0541 \AA$ for $\mathrm{C} 13-\mathrm{C} 19 / \mathrm{O} 5-$ O7, and the dihedral angle between the two vanillin groups is 54.67 (3) ${ }^{\circ}$. A weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2) contributes to the stabilization of the solid-state structure.

Experimental

1-Chloro-2-(2-chloroethoxy)ethane $(7.1 \mathrm{~g}, 50 \mathrm{mmol})$ was added $(30 \mathrm{~min})$ to a solution of 4-hydroxy-3-methoxybenzaldehyde (15.2 g , 100 mmol) and potassium carbonate ($13.8 \mathrm{~g}, 100 \mathrm{mmol}$) in acetonitrile (500 ml). The mixture was refluxed for 24 h under nitrogen. The solvent was removed and the resultant oil was poured into icewater $(500 \mathrm{ml})$. The white precipitate was isolated and recrystallized from ethanol as pure (I) in 41% yield. Colorless single crystals were obtained by slow evaporation of an acetonitrile solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{7} \\
& M_{r}=374.38 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=8.0786(16) \AA \\
& b=30.476(6) \AA \\
& c=8.4775(17) \AA \\
& \beta=117.817(3)^{\circ} \\
& V=1846.0(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.347 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2167 \\
& \quad \text { reflections } \\
& \theta=2.7-25.4^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.34 \times 0.30 \times 0.26 \mathrm{~mm}
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.956, T_{\max }=0.974$
10313 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.115$
$S=1.00$
3755 reflections
246 parameters

3755 independent reflections
1993 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=26.3^{\circ}$
$h=-10 \rightarrow 10$
$k=-30 \rightarrow 38$
$l=-10 \rightarrow 10$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0508 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters (\AA, ${ }^{\circ}$).

O1-C7	$1.207(3)$	O4-C10	$1.420(2)$
O2-C6	$1.360(2)$	O5-C13	$1.359(2)$
O2-C8	$1.427(2)$	O5-C12	$1.433(2)$
O3-C1	$1.360(2)$	O6-C18	$1.368(2)$
O3-C9	$1.435(2)$	O6-C20	$1.425(2)$
O4-C11	$1.414(2)$	O7-C19	$1.209(3)$
C6-O2-C8	$116.75(16)$	C13-O5-C12	$117.15(15)$
C1-O3-C9	$117.03(14)$	C18-O6-C20	$116.46(15)$
C11-O4-C10	$111.58(15)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 9-\mathrm{H} 9 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.60	$3.527(3)$	160

Symmetry code: (i) $-x+1,-y,-z+2$.

Figure 1
The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.

H atoms bonded to C atoms were included in calculated positions $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA]$ and refined using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA
Parashar, R. K., Sharma, R. C., Kumar, A. \& Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. \& Kruger, P. E. (2005). CrystEngComm, pp. 90-95.

